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ABSTRACT
A general predictive model for the effective thermal con-

ductivity of mixtures is developed. In the limit of very small
particle volume fractions, a limiting case is approached where
the effective medium theory of Maxwell holds. At higher solid
fractions, an analytical model for the conductivity of a packed
bed of spheres is developed. These two limiting asymptotic so-
lutions are then combined using a blending procedure. The result
is a semi-analytical model that is valid over the full range of solid
fractions. The model shows that in addition to the conductivities
of the particle/matrix and the solid fraction, the degree of wet-
ting of the particles by the matrix is an important parameter in
estimating the effective thermal conductivity of the mixture. In
addition, the effect of entrapped air is captured through the def-
inition of an effective volume fraction in Maxwell’s model. The
model shows good agreement with experimental data.

NOMENCLATURE

A cross-sectional area,m2

a contact spot radius,m
C correction parameter
D(r) distance between contacting surfaces at r,m
k thermal conductivity,W/mK
k∗, k∗p non-dimensional mixture, particle conductivity

∗Graduate Student, pkarayac@mhtlab.uwaterloo.ca
†Post-doctoral Fellow, Member ASME
‡Associate Professor, Member ASME, Director of Microelectronics Heat

Transfer Laboratory

Lc characteristic cell length,m
Lφ, Hφ low, highφ
n blending parameter
Q heat flow,W
R thermal resistance,K/W
r radial length measured from contact

point,m
SC, FCC simple cubic, face-centered cubic
T temperature,K
V volume,m3

x point contact to edge of void distance,m

Greek Symbols
φ solid (particle) volume fraction
ρ radius of curvature,m
θ void angle,rad

Subscripts
a air
c characteristic
e f f effective
G gap
j total
L macroconstriction/contact
m matrix
p particle
s harmonic mean
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INTRODUCTION
Numerous research initiatives have addressed the minimiza-

tion of thermal joint resistance in microelectronic applications.
Particle-laden polymers are the latest Thermal Interface Mate-
rials (TIMs) being investigated for such applications. The de-
sired thermal properties (conductivity, compliance, etc.) can
be obtained through careful selection of properties of the par-
ticle/matrix materials. A fundamental problem which remains to
be addressed is how to develop general predictive models for the
effective thermal conductivity of the mixture.

Various approaches for estimating mixture conductivities
have been developed. There are as a consequence many models
available in the literature. Many are semi-theoretical and require
data for necessary constants. See [1] for a brief literature review.

Part of what makes the modeling of the effective thermal
properties of mixtures difficult is that certain mechanisms of heat
transfer are endemic to particularranges of solid fraction. Effec-
tive medium theory (EMT) [2], for example, can only be used
accurately for low volume fractions (Lφ), Fig. 1a, a consequence
of neglecting the effects of neighboring particles on lines of heat
flow. As the volume fraction is increased, some authors have
noted a percolation threshold [3] beyond which the conductiv-
ity increases much more rapidly than is predicted by EMT. It
is imagined that the mixture eventually approaches a condition
analogous to a packed bed, Fig. 1c, where models developed for
these conditions become more appropriate.

In the present work, the above mentioned models (EMT,
packed bed) are considered two limiting asymptotic solutions. At
low particle volume fractions, Maxwell’s model (EMT) is valid.
As the particle volume fraction is increased, Fig. 1b, there is a
smooth transition where the mixture conductivity continuously
approaches that predicted by a packed bed model. A simplified
model (spherical particles, no applied load) is developed for the
packed bed in the present paper where the effects of particle wet-
ting are considered. These two solutions are combined using the
Churchill-Usagi blending procedure [4]. The model is compared
with experimental data and shown to give good agreement. In
addition, the effect of entrapped air is captured to a first approx-
imation through the definition of an effective volume fraction in
Maxwell’s model. This gives excellent agreement with experi-
mental data.

MODEL DEVELOPMENT
The mixture is first characterized for the two limiting solid

fraction regimes. The assumptions of the model are stated be-
low. The first three assumptions apply to the entire range of solid
fractions. Assumptions 4 to 8, however, specifically hold for high
solid fractions (Hφ) where the particles begin to make contact. In
this range ofφ, imperfect wetting results in the presence of an air
void in the vicinity of the point contact.

Figure 1. A PARTICLE-LADEN POLYMER MIXTURE FOR (a) LOW

SOLID FRACTIONS (Lφ), (b) INTERMEDIATE SOLID FRACTIONS, AND

(b) HIGH SOLID FRACTIONS (Hφ)

Assumptions

1. The particles are smooth spheres of uniform size

2. The particles and matrix are homogeneous and isotropic

3. Boundary resistance is neglected

4. Heat transfer across the gap occurs only by conduction

5. The particles support no load (point contact at high solid
fraction)

6. The particles are isothermal,kp >> km

7. Rarefaction effects in the gap between contacting particles
are negligible

8. Heat transfer through the air void is negligible

Low solid fraction limit (Lφ)
At low solid fractions, the disturbing effect on the course of

the heat flow by neighboring particles is neglected. Eucken [5]
adapted a model developed by Maxwell for the effective electri-
cal resistance of a substance into which are disseminated small
spheres. In his analysis, a basic spherical cell of the matrix can
be identified wherein a spherical particle is embedded. An ef-
fective homogeneous medium surrounds this basic cell, Fig. 2.

If the spheres were dispersed in a matrix with regular lat-
tice arrangement, a cube would be chosen as the basic cell. The
spheres are randomly dispersed; therefore, a convenientaverage
shape is the sphere.

The result of solving the Laplace equations for the 3 media
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Figure 2. EFFECTIVE MEDIUM THEORY

with appropriate boundary conditions gives [5]

k∗ =
k

km
=

k∗p(1+2φ)+2(1−φ)
k∗p(1−φ)+(2+φ)

(1)

wherek∗p = kp/km, kp is the conductivity of the particle, andkm

is the conductivity of the matrix.
In taking the limit ask∗p →∞ in Eq. (1), the non-dimensional

conductivity of the mixture is seen to approach

k∗ =
k

km
=

1+2φ
1−φ

(2)

This enhancement in the conductivity of the matrix is practically
reached oncek∗p > ∼ 100 for typical volume fractions. Any ef-
forts directed towards increasing the effective thermal conduc-
tivity of a material are thus wasted if entirely directed towards
the search for a more highly conductive dispersed phase. Other
factors must be considered.

High solid fraction limit (Hφ)
In this study, when the solid fraction is large, the mixture is

treated as a randomly packed bed of smooth spheres of uniform
size. The total thermal resistance is calculated from a network
of conduction paths. The effective conductivity of the composite
media is determined from this total resistance and the geometry
of a characteristic cell.

A regularly packed bed is a basic arrangement of spheres
uniform in size repeated throughout. A characteristic cell whose
thermal properties represent those of the entire bed can thus be
identified. Although there are many different ways of arranging
the spheres, Tien and Vafai [6] have shown that the effective ther-
mal conductivity of a randomly packed bed presents two limits.
As an upper bound, the packing arrangement can be considered

Figure 3. PACKING ARRANGEMENTS FOR (a) SIMPLE CUBIC (SC)

AND (b) FACE-CENTERED CUBIC (FCC) PACKED BEDS

Figure 4. HEAT TRANSFER MODES FOR SMOOTH SPHERICAL PAR-

TICLES BROUGHT INTO CONTACT UNDER LOAD [7]

to be face-centered cubic (FCC) and as a lower bound, simple
cubic (SC), Fig. 3.

Only these two limiting arrangements (SC, FCC) are con-
sidered in the present study. The solid fraction corresponding to
each of the two packing arrangements areφSC = π/6' 52% and
φFCC =

√
2π/6 ' 74%. We develop a model so that we have

k(φSC) and k(φFCC). These points are joined linearly and as-
sumed to constitute the second asymptote.

When two smooth spherical particles are brought into con-
tact under load, Fig. 4, a circular contact spot is formed. Heat
can be transferred from one sphere to the other by conduction
through the contact area, conduction through the substance in
the gap, and radiation across the gap. In this study, convection
and radiation are neglected.

The total thermal resistance for a characteristic cell (R j) is
determined from the parallel combination of the contact and gap
resistances, Fig. 5. By neglecting the bulk and layer resistances
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Figure 5. THERMAL RESISTANCE (SCHEMATIC AND NETWORK OF

RESISTORS)

Table 1. CHARACTERISTIC LENGTHS AND RESISTANCES: SC, FCC

Packing φ Lc Rc

SC 0.52 D R j

FCC 0.74
√

2D/2 R j/2

of the particles, the total thermal resistance can be written as

1
R j

=
1

RL
+

1
RG

(3)

whereRL is the contact resistance associated with conduction
through the contact spot andRG is the gap resistance. The ef-
fective thermal conductivity is still a function of(kp, km, ...)
despite our simplification of the resistive paths. This is because
RL = f (kp, ...) andRG = f (km, ...).

It follows directly from the definition of thermal resistance
(R = ∆T/Q) and Fourier’s law that

k =
Lc

RcA
(4)

whereLc is the characteristic length,Rc is the resistance of the
cell, andA is the cross-sectional area (L2

c ), Table 1. The char-
acteristic length is selected as shown in Fig. 3. A 1/8 th cell
represents FCC packing. Note thatRc,FCC = R j/2 as there are 4
half contact regions in parallel in the cell. Analytical models of
the contact and gap resistances are required at this point so that
a full solution of the effective conductivity of the bed for high
solid fractions in closed form can be presented.

Contact resistance Yovanovich et al. [8] have shown
that if the contact spot between two spheres is kept small, the
contact region can be accurately approximated as a half-space.
The contact resistance is thus 1/2ksa whereks is the harmonic
mean thermal conductivity anda is the contact spot radius. In the
present study, the load supported by the particles is assumed neg-
ligible and taken as zero so that the spheres make point contact.
Conduction across the joint is thus impossible since there is no
area (a → 0) over which any heat flux can occur. The resistance
associated with conduction across the contact spot approaches
infinity: RL → ∞.

Gap resistance Additional thermal resistance results as
heat is conducted through the substance in the gap. The heat
conducted across the gap can be written from Fourier’s law inte-
grated over the cross-sectional gap area as

QG =
∫ ∫

AG

km∆T
D(r)

dAG (5)

where km is the conductivity of the matrix,AG is the cross-
sectional area of the flat surface,∆T is the temperature difference
between the contacting surfaces (equivalent sphere and flat), and
D(r) is the distance between the contacting solids at a given ra-
dius, Fig. 6.

From the definition of thermal resistance and recognizing
thatdAG = 2πrdr we can write the gap resistance as

RG =
1

2πkm

(∫ bL

x

r
D(r)

dr

)−1

(6)

where for spherical particles

D(r) = ρ−
√

ρ2− r2 (7)

The termbL represents the chord length of the gap. For
an SC arrangement,bL = ρ and for an FCC arrangement,bL =
ρ tan ψ whereψ is 40◦, a result of geometry [7].

Although there is only a point contact made, the integral can-
not be taken quite to the limitr = 0. In reality, imperfect wetting
of the particles by the matrix will result in the presence of an
air void in the vicinity of the point contact, Fig. 6. The matrix-
air interface of the void makes an angle with the point contact
which is herein referred to as thevoid angle (θ). The void an-
gle is thought to be related to the relative surface energies of the
matrix, air, and particles, as well as the temperature and pres-
sure difference across the interface [9]. The air pockets may be
eliminated if sufficient heat energy is applied but is practically
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Figure 6. IMPERFECT WETTING OF THE SURFACES RESULTS IN A

VOID IN THE VICINITY OF THE POINT OF CONTACT

very difficult to achieve. The distance from the point contactx is
related to the void angle as

x = ρ tan θ (8)

defining the lower bound of the integral in Eq. (6).
Any heat transfer through the air in the void is neglected.

The integral in Eq. (6) can be solved analytically and so an ex-
plicit solution of RG in closed form can be written as

RG =
1

2πkm

[
ρ

(
ln

(
1−A
1−B

)
+A−B

)]−1

(9)

whereA =
√

1− tan2 ψ andB =
√

1− tan2 θ. ψSC is taken as
45o.

The void angleθ is determined by evaluating Eqs. (4) and
(9) with experimental data atφSC . If data are not available atφSC ,
the nearest data point is extrapolated and the same procedure is
applied. It is then assumed thatθSC = θFCC .

Total thermal resistance The thermal resistance for
the two distinct paths is completely characterized:RL → ∞ and
RG is given by Eq. (9). The total thermal resistance is thus
equivalent to the gap resistance (R j = RG, Eq. (3)) and from
Eq. (4), we have a relationship for the effective conductivity of
the packed bed. It is seen that at very high solid fractions, the
effective conductivity of the composite is not a function of the
conductivity of the dispersed phase but only of the conductivity
of the matrix and the degree of wetting as quantified by the void
angle (the radii of the contacting particles cancel).

 

(a) (b) (c)

Figure 7. SEM MICROGRAPHS OF (a) SILICA, (b) ALUMINA, AND (c)

SCAN PARTICLES [10]

Intermediate solid fraction
We note that in the intermediate range of volume fractions

(∼ 0.1 ≤ φ≤ ∼ 0.5), kLφ < k < kHφ wherekLφ andkHφ are the
asymptotically approached effective conductivities of mixtures
for low and high solid fractions.kLφ = k(kp, km, φ) is given by
Eq. (1). kHφ = k(km, θ, φ) is given by the straight line join-
ing k(φSC) = 1/R jD andk(φFCC) = 2

√
2/R jD whereR j = RG is

given by Eq. (9).
Assuming a smooth transition of the effective conductivity

with solid fraction, one can write

k = (kn
Lφ+ kn

Hφ)
1
n (10)

The model developed forHφ is linearized in the log-log domain
and blended with the Maxwell model. This simple model cap-
tures the behavior of effective thermal conductivity over thefull
range of particle solid fractions (0≤ φ≤ φFCC ). The blending
parametern is estimated using available data.

COMPARISON WITH EXPERIMENTS
In a set of experiments performed by Wong and Bollampally

[10], the effective thermal conductivities of epoxy resins filled
with ceramic particles like silica, alumina, and silica-coated alu-
mina nitride (SCAN) were determined. The average size of the
particles used was 12 to 15 microns. The silica particles were
spherical whereas the alumina particles were close to spherical
and the SCAN particles, irregular in shape, Fig. 7. The thermal
conductivities of the epoxy resin matrix and particles are sum-
marized in Table 2.

The data of [10] for each of the three mixtures are presented
in Figs. 8 to 10. The model is applied withn = 3.5 and shows
good agreement in this range, in particular for the almost spher-
ical alumina particles and irregular SCAN particles in the epoxy
resin.

The model predicts an enhancement ofk∗(φSC) = 7.7 for the
silica dispersion. This means that the mixture conductivity has
reached the particle conductivity (k∗ ·km ' kp). Becausekp/km ∼
10 is not>> than 1 for the silica dispersion, our assumption
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Table 2. THERMAL CONDUCTIVITY OF EPOXY RESIN MATRIX AND

PARTICLES (Data from [10])

Constituent k [W/mK] Shape

epoxy resin 0.195 (matrix)

silica 1.5 spherical

alumina 36 almost spherical

SCAN∗ 220 irregular

∗silica-coated alumina nitride

φ

k*

0.1 0.3 0.5 0.7
0

2

4

6

8
Experiment
Maxwell
Packed Bed (θ = 18 deg)
Model

Figure 8. SILICA: EXPERIMENTAL RESULTS AND THEORETICAL

PREDICTIONS OF EFFECTIVE THERMAL CONDUCTIVITY WITH

SOLID FRACTION (Data from [10])

that the particles are isothermal may not be valid. The additional
simplification of neglecting boundary resistance also leads to an
overestimate ofk. In the alumina and SCAN dispersions, the
mixture achieves at best 10% and 3% of the particle conductivity,
respectively. Though the particles are likely isothermal in these
mixtures, it is questionable that the packed bed model developed
in the paper is appropriate since the particle geometries deviated
from the assumed spheres.

The enhancement of a mixture’s conductivity is often im-
plicitly attributed entirely to the use of particles of higher con-
ductivity. Variables such as geometry and degree of wettability
are typically treated as second-order effects. The authors recog-
nize, however, that wetting of the particles is an important pa-
rameter in establishing the enhancement for a mixture.

A practical range on the void angle is estimated from these
experiments: 1< θ < 18 deg. It is noted thatθsilica > θalumina >
θSCAN . The void angle is essentially a fitting parameter in the
present formulation of the model. For a more conductive dis-
persed phase,k(φSC) is typically higher, which requires lower

φ

k*

0.1 0.3 0.5 0.7
0

4

8

12

16 Experiment
Maxwell
Packed Bed (θ = 6 deg)
Model

Figure 9. ALUMINA: EXPERIMENTAL RESULTS AND THEORETI-

CAL PREDICTIONS OF EFFECTIVE THERMAL CONDUCTIVITY WITH

SOLID FRACTION (Data from [10])

φ

k*

0.1 0.3 0.5 0.7
0

8

16

24

32 Experiment
Maxwell
Packed Bed (θ = 1 deg)
Model

Figure 10. SCAN: EXPERIMENTAL RESULTS AND THEORETICAL

PREDICTIONS OF EFFECTIVE THERMAL CONDUCTIVITY WITH

SOLID FRACTION (Data from [10])

resistance, Eq. (4), and thus, a smaller void angle, Eq. (9).

Parametric Study
The effect of the conductivity of the dispersed phase on that

of the mixture is examined more closely. The effect of entrapped
air is also considered and a modified volume fraction is proposed.
The sensitivity of the void angle to the calculations is also dis-
cussed briefly.

Particle conductivity Maxwell’s model shows that the
upper limit on enhancement of the matrix with a dispersion of
particles is practically reached forkp/km ' 100. Although this
model is not appropriate for the full range of particle volume
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k*

101 102 1030

2

4

6

8

10

12

Silica
Alumina
SCAN

Figure 11. THERMAL CONDUCTIVITY OF MIXTURE A WEAK FUNC-

TION OF THERMAL CONDUCTIVITY OF PARTICLES (φ= 50%) (Data

from [10])

fractions, this prediction is still observed experimentally even
for high volume fractions, Fig. 11. For example, the particle
conductivity must be increased by a factor 100 to enhance the
conductivity by only 3 times atφ = 50%. This leads the au-
thors to believe that there are potentially other variables of the
mixture, such as the geometry of the particles and the degree to
which they are wetted by the matrix, which must now be given
further consideration. It is of interest to note that in our model,
the mixture conductivity is independent of particle conductivity
to a first order approximation at large volume fractions.

Entrapped air Any real mixture of particles in a fluidic
matrix will have entrapped air to a certain extent. A recent study
by Gowda et al. [11] has indicated the presence of air voids at the
particle-resin interface, Fig. 12. A rigorous approach to includ-
ing this effect in our model would be too complicated to simply
annotate at this point; however, to a first approximation, we pro-
pose an alternate definition of the volume fraction as

φe f f =
Vp

(Vp +Va)+Vm
(11)

where the volume of the entrapped air,Va, has been accounted
for in the total volume.

Becausekair < km, a model which neglects the entrapped air
gives an overestimate of the mixture conductivity in this respect.
To a first approximation, an effective volume fraction can be de-
fined as

φe f f = Cφ (12)

whereC > 1. The parameter C, for now, can be determined from

 

Figure 12. VOID AT PARTICLE-MATRIX INTERFACE [11]

φ

k*

0.1 0.3 0.5 0.7
0

10

20

30

40

50
Silica Exp.

Maxwell, φeff = φ
Alumina Exp.

Maxwell, φeff = 1.3 φ
SCAN Exp.

Maxwell, φeff = 1.5 φ

Figure 13. EQUIVALENT VOLUME FRACTION: EXPERIMENTAL RE-

SULTS AND PREDICTIONS OF MAXWELL’S MODEL FOR SILICA, ALU-

MINA, AND SCAN MIXTURES (Data from [10])

the experiments to illustrate this point. The experimental results
of Wong and Bollampoly and the predictions of Maxwell’s equa-
tion with an effective volume fraction are shown in Fig. 13. The
agreement is excellent. Though the authors still concede that
Maxwell’s model is not valid for the higher volume fractions and
a more rigorous approach is required, the illustrative purpose of
this exercise− that the effect of the entrapped air can potentially
be modeled with an effective volume fraction− should not be
understated.

Void angle The effective thermal conductivity of the
mixture estimated with the present model is extremely sensi-
tive to the void angle, Fig. 6. This is especially true for high
volume fractions. Figure 14 shows the effective thermal con-
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K
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10­2 10­1 100 10110­1

100

101

Present Model
Silica
Alumina
SCAN

Figure 14. THE EFFECTIVE THERMAL CONDUCTIVITY IS SENSI-

TIVE TO THE VOID ANGLE (SC, φ= φSC ' 52.4%) (Data from [10])

ductivity against void angle using the data of [10]. Note that
kHφ = k(km, θ, φ) so that a mixture of any particles dispersed
in the same matrix with the same volume fraction will lie on the
curve in Fig. 14.

CONCLUSIONS

The model developed in the present paper has shown good
agreement with one set of experiments. This is attributed in part
to the use of the void angle as a measure of the degree of parti-
cle wetting. A large void angle indicates that the particle-particle
interfaces are penetrated to a lesser extent with the matrix mate-
rial. This is shown to have a significant effect on the prediction
of the mixture conductivity, given that the assumptions of the
analysis are valid. The void angle was found to range from 1 to
18 degrees. The effect of entrapped air in the mixture has been
addressed with a modified definition of the volume fraction. In
addition, an approach to modeling the mixture using an effec-
tive volume fraction in Maxwell’s effective medium theory has
shown some promise.

RECOMMENDATIONS

The analysis idealizes the problem and more work is re-
quired to develop a comprehensive model. It remains to calculate
the void angle from fundamental properties of the consitituents
of the mixture. In addition, the issues of a particle size distribu-
tion, particle geometry, boundary resistance, and the size effect
remain to be addressed. More work is being done to address
these issues.
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